LangChain Explained in 13 Minutes

Click to expand the mind map for a detailed view.

LangChain Mind Map

Introduction

What is LangChain?

  • Open-source framework for AI development
  • Combines large language models (LLMs) with external computation & data
  • Available in Python and TypeScript (JavaScript)

Why Use LangChain?

  • Popularity surged after GPT-4 (March 2023)
  • Enables referencing personal data sources (e.g., PDFs, databases)
  • Facilitates automated actions (e.g., sending emails)

Core Concepts

1. LLM Wrappers

  • Connects to models like GPT-4, Hugging Face models

2. Prompt Templates

  • Avoid hardcoding text
  • Allows dynamic text input

3. Indexes

  • Extracts relevant information for LLMs
  • Stores data in vector format

4. Chains

  • Combines multiple components to build LLM applications
  • Enables sequential processing (e.g., multi-step reasoning)

5. Agents

  • Interacts with external APIs
  • Can execute Python code

LangChain Pipeline

Step 1: User Query

  • Input question provided by the user

Step 2: Vector Representation

  • Question converted into vector format
  • Similarity search performed in vector database

Step 3: Data Retrieval

  • Relevant document chunks fetched

Step 4: Response Generation

  • LLM generates response based on query & retrieved data

Practical Applications

Data-Aware Applications

  • References personal/company data
  • Uses vector databases (e.g., Pinecone)

Action-Oriented Applications

  • Automates tasks (e.g., booking flights, transferring money, paying taxes)

Education & Learning

  • LLMs assist in studying by referencing syllabi

Coding & Data Science

  • Enhances analytics by connecting to company data

Setting Up LangChain

Install Dependencies

  • pip install python-dotenv langchain pinecone-client

Environment Variables

  • OpenAI API key
  • Pinecone API key & environment

Using LLM Wrappers

Text-based Model

  • Uses OpenAI’s text-davinci-003

Chat-based Model

  • Uses OpenAI’s GPT-3.5-turbo or GPT-4
  • Implements message schemas (AI, human, system messages)

Prompt Templates

  • Enables dynamic input formatting
  • Example: Inject user query into a predefined text structure

Chains

Simple Chain

  • Combines LLM with a prompt template

Sequential Chain

  • Output of one chain feeds into another
  • Example:
  • Chain 1: Explain a concept
  • Chain 2: Explain it for a 5-year-old

Embeddings & Vector Stores

Step 1: Splitting Text into Chunks

  • Uses RecursiveCharacterTextSplitter

Step 2: Generating Embeddings

  • Uses OpenAI’s Ada model

Step 3: Storing in Pinecone

  • Uploads vectors for similarity search

Step 4: Retrieving Information

  • Queries stored vectors to fetch relevant information

Agents & Python Execution

Using Agents for Code Execution

  • Implements OpenAI model with Python execution capabilities
  • Example: Finding quadratic equation roots with NumPy

Conclusion

  • LangChain simplifies LLM integration with external data & APIs
  • Expanding capabilities enable powerful applications
  • Ongoing advancements enhance AI automation and accessibility